Wednesday, June 8, 2011
GREAT JOB!!
Great job this year on blogging our Honors Biology Class. I think that you all learned a lot this year and so did I. Have a wonderful summer and I'll see you in the fall.
Mrs. Andrews
Wednesday, June 1, 2011
June 1, 2011
- has nucleus and other organelles
- Dendrites- branched, short, and recieve message from other cells
- Axon- long fiber that conducts signal toward another neuron or effector.
- Supporting cells- protect, insulate, reinforce
- Myelin sheath- chain of beadlike supporting cells
- Nodes of Ranview- spaces in myelin where impulse is transmitted
- synaptic knob- relays signals to other neurons
- Electrical Synapse
- action potential jumps from cell to cell
- heart and digestive track
- Chemical synapse
- synaptic cleft- narrow gap seperating 2 cells.
- most other organs, skeletal muscle and CNS
- Action Potential arrives at the synaptic knob
- Neurotransmitter vessicals fuse with membranes
- neurotransmitters are released into cleft
- neurotransmitter diffuse across gap and binds to receptor proteins on receiving neurons
- Ion channels open and ions trigger action potential.
- Neurotransmitter are broken down and returned to sending neoron for recycling
- brain and spinal cord
- Cephalization- concentration of nervous system at the head end.
- Centralization- presence of CNS saparate from PNS
- spinal cord- bundle of nerve fibers in spinal column (Central communication between brain and body)
- Brain- Master control center (Homeostasis center, sensory center, emotion, intellect
- Brain as cerebrospinal fluid - liquid that cushions the CNS and helps supply it with nutrients, WBC, and hormones.
- Has Meninges- layers of connective tissue for protection
- white matter- mainly axons (with myelin sheath)
- gray matter- mainly nerve cell bodies and dendrites (Cerebral Cortex)
- Has a couple of divisions.
- Sensory Division
- brings info to CNS from outside environment
- Info into CNS from body itself (internal environment)
- Motor Division
- Somatic Nervous System- carrys signals to Skeletal muscles (voluntary, concious control)
- Autonomic Nervous System- controls smooth and cardiac muscle, organs, glands, digestive, circulatory, excretory, and endocrine (2 branches and involuntary)
- Study for finals
- UP pg. 81-84
- study for test Mon.
- Crossword puzzle
Tuesday, May 31, 2011
5/31/11
- Notes
- Balloon lab and Lab #65: UP 57-61
Smoking
- Air pollutants: CO, SO2, O3
- It contains more than 4000 chemicals
- The chemicals damage the mucus and cilia making it difficult to remove foreign particles
- It kills over 430,000 Americans per year
- Emphysema: disease that causes alveoli to disintegrate causing breathlessness and fatigue
Thursday, May 26, 2011
Respiration
Yunsu Y.
Respiration notes:
** The respiration that we are talking about is not the same as cellular respiration!
1. Respiratory Surfaces:
** not all organisms have respiratory systems: bacteria don't have because their surface area to volume ration is large so diffusion can occur, but for humans our surface area is too small so we need respiratory systems.
- Earthworm: has moist skin=making diffusion across body surface easier.
- Aquatic Organisms: gills extend from the body which increases surface area and they are surrounded by water so that diffusion can occur.
- Terrestrial Organisms: respiratory surfaces fold into the body. The system is inside lined with moisture (mucus), needed for diffusion.
- Insects: tracheae and no circulatory system to transport O2.
2. Human Respiratory System:
- Breathing: the moist insides are exposed to air, then O2 dffuese into blood vessels and CO2 to the lungs.
- Circulatory System: trasnport O2 to all body cells and O2 back to lungs.
- Diaphragm: Sheet of muscle-important for breathing.
- Pharynx: where the digestive and respiratory systems meet.
- Larynx: voice box, we produce sounds by breathing out and the air moves the vocal cords making them vibrate.
- Trachea: windpipe, somtimes food gets caught here causing us to cough or choke.
- Bronchi: Lead to each lung
- Bronchioles: smaller branches
- Alveoli: cluster of air sacs. These are like the villi and microvilli found in the small intestine. This is where gas exchange occurs with blood vessels. These increase the surface area=more gas exchange.
- When the diaphragm contracts air is "PULLED" into the lungs. This is increasing the volume and decreasing the pressure. High pressure outside wants to get inside to the low pressure. (high to low!)--------- Negative Pressure breathing.
- When diaphragm relaxes when the air is "PUSHED" out of the lungs. There is a decrease in volume and an increase in pressure.
- Nerves in the brain regulate our breathing. Nerves tell the diaphragm when to contract and relax.
- 10-14 inhalations per minute. (average)
- This average will change depending on CO2 levels. The more CO2 in the blood, the faster the respiration rate.
- Hyperventilation: Purges blood of CO2 that brain stops sending messages to the diaphragm. This causes people to pass out but breathing into a paper bag helps by increasing the amount of CO2 taken in.
- Consists of 4 polypeptide chains, heme (chemical group) and iron- gives blood the red color.
- Each iron atom can bind to 1 O2 molecule=each hemoglobin can carry up to 4 O2 molecules.
- O2 rich blood is bright red and O2 poor blood is dark red or blue.
- Iron deficiency cause anemia
- When hemoglobin binds to CO (carbon monoxide)=Bad! Now the hemoglobin cannot bind with oxygen because the bond is too strong on the CO. This interferes with the delivery of O2 to the body cells and cellular respiration=death. Also found in cigarette smoke. \
- Pollutes air
- Contains many harmful chemicals damaging mucus and cilia making it hard to remove foreign particles. = smokers cough.
- Smoking kills ~430,000 Americans per year.
- Emphysema: disease that causes alveoli to disintegrate. = reduces lungs' ability to exchange gas and causes breathlessness and fatigue.
Lab 54&55 due tom with cover page and color code the pictures
U.P 47-51 and 55-56 due TUESDAY
Next Scribe CJ P.
Wednesday, May 25, 2011
Pig Dissection Day 3
We used scissors to cut the blood vessels around the heart. After examining the heart and the vessels, we examined the back, or dorsal, side of the heart. Afterwards, the heart was cut lengthwise (the cut was parallel to the front and back of the heart). Both ventricles and the left atrium were visible inside of the heart. With the heart removed, we identified the trachea and esophagus. The trachea is the windpipe that carries air. The esophagus is the tube that carries food, liquids, and saliva from your mouth to stomach. The carotid arteris and jugular veins, which carry blood to and from the head, were found on either side of the trachea. Beneath them was the vagus nerve. The thyroid gland was placed ventral to the trachea. It was reddish-brown and had two lobes. The larynx was located at the top of the trachea.
The Head:
We opened the mouth of the pig and examined the tongue, any teeth visible, and the back of the throat. We had to use our scalpel to slit the corners of the mouth on both sides in order to view the epiglottis, glottis, and opening to the esophagus. The pig has four pairs of salivary glands; the largest of these is the parotid gland, which extends from the base of the ear to the shoulder and the jaw. Using our scalpel, we made an incision through the skin and facial muscles at the base of the ear. The skin and muscle layer were removed, and we examined the parotid gland. Beneath the parotid gland was the mandibular gland.
The Nervous System:
The pig has a very similar nervous system to that of humans. There is the central nervous system consisting of the brain and spinal cord, and the peripheral nervous system consisting of cranial and spinal nerves and their branches. Using our scalpel, we made an incision through the skin of the head. The skin was then peeled off. Afterwards, we inserted the pointed end of our scissors between the area where the bones of the skull met. Then we broke off pieces of the skull until most of the skinned area was open. The outermost membrane of the pig is called the dura mater. It is the thickest and toughest of the membranes. The surface of the brain is covered by a thin membrane called the pia mater. The third membrane is called the arachnoid membrane and is found between the dura mater and pia mater. In living animals, cerebrospinal fluid fills the space between the two inner membranes. Our group frist cut through the dura mater, exposing the brain. We attempted to identify the right and left cerebral hemispheres, cerebellum, cerebrum, olfactory lobes, and the medulla. We also identified cranial nerves. The spinal cord was surrounded and protected by the vertebrae of the spinal column. We removed the skin from an area of the back so around 8~9 cm of the spinal column were exposed. The remaining tissues were removed so the spiny extensions of the vertebrae were not completly exposed. We cut off the tops of the spiny extensions of the vertebrae with our scissors and saw the spinal cord and spinal nerves.
HW: Lab with cover sheet due Friday! (Don't forget to color code diagrams in lab).
Next Scribe: YUNSU Y. (:
Monday, May 23, 2011
Pig Dissection Day 1
Sunday, May 22, 2011
May 20th 2011
CJ P
White blood cells v. Platelets
WHITE BLOOD CELLS:
aka: leukocytes
WBCs fight infection
Lack hemoglobin (which is found in RBCs)
Have nucleus (not found in RBCs)
Found OUTSIDE of circulatory system
PLATELETS:
aka: thrombocytes (bits of cytoplasm broken off from bone marrow)
Fibrinogen: protein found in plasma
Fibrin: Fibrinogen converted by clotting
CLOTS BLOOD (scabs)
HEMOPHILIA: excessive, fatal, bleeding occurs from minor cuts
THROMBUS: blood clot that forms in absence of injury
EMBOLUS: thrombus that dislodges and travels
Cardiovascular disease: set of diseases that affect the heart.
The heart requires oxygen rich blood to survive because it's made of TISSUE.
CORONARY ARTERIES: supply heart muscle with oxygen
HEART ATTACK: failure of heart to function properly
ATHEROSCLEROSIS: chronic cardiovascular disease
Cholesterol build up in arteries causing narrow passages--->decreased blood flow----> increased blood pressure= BAD.
TREATMENTS:
ANGIOPLASTY: baloon catheter to compress plaque=opens clogged arteries
STENT: wire mesh tubes prop open arteries
BYPASS SURGERY: vessel sewn onto heart shunt blood around a blocked artery
ARTIFICIAL HEART: an artificial heart.
lots of homework:
Pgs 7-18
Lab 15
Read pig lab -closed toed shoes and hair ties required in case fetal pigs turn into zombies, you will be prepared to run.
43-46
Next scribe: Smally Patty (Sonali)
Tuesday, May 17, 2011
5/17/11
Monday, May 16, 2011
Scribe 5/16/11
New unit!
First topic: Circulation
What's the purpose of the circulatory system?
1. Maintains the exchange of materials in/out of our bodies
2. Efficient internal transport system of blood and other substances
3. Allows diffusion to occur by giving cells the resources they need
-Oxygen from the lungs go to blood, then to tissue
-Carbon Dioxide from tissue go to blood, then to the lungs
-Basically, the circulatory system gets rid of waste in our bodies (Carbon Dioxide, urine, feces)
There are two types!
-OPEN circulatory system:
--Blood is pumped through open blood vessels and flows among cells
--Invertebrates (no backbone), mollusks (snail), arthropods (insects)
-CLOSED circulatory system:
--Blood pumps within a secluded blood vessel amongst itself
--vertebrates (backbone), earthworm, octopus
Comparative Anatomy: Hearts
-Fish: 2
-Amphibian (Frog): 3
-Reptile (Lizard): 3-4
-Bird/Mammal (Crow/You): 4
The cardiovascular system is a fascinatingly complex one that uniquely comprises primarily (but not exclusively (unless the discussion's basis revolves around the idea of simplistic measures)) of the hard-working heart and the efficiently excellent blood vessels, which are (needless to mention) inevitably teamed up (or forced to work) with the rigorous, colossal player in the soccer stadium, the motivated student in the school, the Lithium-ion 700 Milliamp battery in the Samsung Galaxy S phone, blood (or sangre, in Spanish).
What the...?
Cardiovascular system=heart+blood vessels+blood!
Parts:
Atrium=heart chamber that RECEIVES BLOOD
Ventricle=heart chamber that KICKS OUT BLOOD
Rankings!
Blood vessels: arteries, then arterioles, then capillaries, then venules, then veins.
DIFFUSION OCCURS IN THE CAPILLARIES.
SO...... where does blood travel?
1. Right ventricle
2. Lungs
3. Pulmonary valve
4. Capillaries (oxy diffuses into blood)
5. Pulmonary veins
6. Left Atrium (oxy rich!)
7. Bicuspid valve
8. Left ventricle
9. Aortic valve
10. Aorta
11. Capillaries (O2 diffuses into tissues, CO2 diffuses into blood)
12. Superior Vena Cava
13. Inferior Vena Cava
14. Right Atrium
15. Tricuspid Valve
16. Dispersed to supply arteries!
How does the heart work?
-Atria has thin walls, pumps blood to VENTRICLE
-Ventricle has THICK walls, pumps blood to BODY
-Valves make sure blood doesn't come back inside
-4 chambers make it easy to separate oxy rich and oxy poor blood!
Cardiac Cycle
-Definition: rhythmic contraction and relaxation of the heart
Two phases of this cycle!
1. Diastole-relaxation
2. Systole-contraction
Homework: Read chapter 23 pages 503-514.
Late arrival tomorrow!
Tuesday, May 10, 2011
Kristen
Hey guys! Sorry there hasn't been a new post in a while. I had some technical difficulties.
Today we took a quiz on digestion. Just remember which enzymes break down what.
Mrs. Patrick collected the frog lab and the energy content lab.
*Read the nutrients lab because it's a bell-to-bell lab so come prepared!!!!!
*Design-A-Quiz due Thursday!!!!
*Ch 22 Study Guide due tomorrow!!!!
Next Scribe: Davin
Tuesday, April 26, 2011
4-26-11
4 Ways that We Regulate Our Internal Environment:
1. Homeostasis: (Review from yesterday...)
- Steady state. While there are large external fluctuations, our homeostatic mechanisms take those in and make them smaller fluctuations.
- Although we use homeostasis, there are still changes but in ranges that are tolerable=dynamic state.
- Negative Feedback: When something is too much and it turns off.---think of a thermostat, you set it to 72 degrees and when it gets too hot inside, the thermostat turns on and when the temperature goes over 72, it turns off because it is too hot at the moment.----"on and off" switch.
- Positive Feedback: Process that intensifies-makes even more---"on and on more" switch.
- Usually negative feedback is used especially in our bodies, but positive feedback is still present.
- we are endotherms, we make our own heat from metabolism: sum of chemical reaction=heat.
- ectotherms use the sun for heat. Ex:Reptiles.
- Heat loss is regulated by hair, fur, migration, huddling, clothing, sweating, and panting.
- When we get cold our blood vessels constrict near the surface this is what causes shivering and goosebumps. ---this leads to a decrease in exchange from environment.
- Our brains are the control center. This is the thermostat of our bodies and uses Negative feedback when needed.
- Gain water from drinking or eating
- Through urinating, breathing, and perspiring we lose water. ---the kidneys help regulate this!
- It depends: sometimes a fever is good because it kills bacteria growth and speeds up the repair of damaged tissue. (100-102 degrees)
- But can also be harmful because it damages body proteins and you can die. (104 degrees and over.)
- Fever-caused by "pyrogens" these raise the body temperature.
- Kidneys are the main organs. They filter blood and take out the "bad" stuff.
- We have 2 kidneys that are smaller than your fist and are located in the lower back.
- They contain tubules, capillaries. Throught the tubules blood enters and it filtrates water, glucose, salts, and amino acids.
- Waste products need to be excreted: urea, extra water, extra salt . (sweat)
- The four Processes of the Kidney:
- Filtration: Small things only enter the tubule.
- Reabsorption: Water and solutes are returned. Take back what we want.
- Secretion: Specific substances are removed from blood-2nd chance to get everything-drugs go through here (medicine.)
- Excretion: Urine exits body. Leftover waste.
HW: Design a QUiZ due May 12th
Do UP. 53-57 due Thursday
Do Up. 7-11 due Thursday
NO SCHOOL TOM SO SLEEP IN!next scribe: Kristen M.
Monday, April 25, 2011
Unit 11: Body Tissues, Excretion, and Digestion
- Cellular Level
- Tissue Level
- Organ Level
- Organ System Level
- The Organism Itself
- Loose Connective Tissue (webbed)
- Adipose Tissue (fat)
- Blood
- Fibrous Connective Tissue
- Cartilage
- Bone
Wednesday, April 20, 2011
April 19. 2011
GLYCOLYSIS:
- 6 carbons in, 6 carbons out (glucose, 2 pyruvic acid)
- 2 ATP needed at beginning as investment
- 4 ATP released, 2 ATP gained at end
- REMEMBER: break bond--> release energy. form bond--> store potential energy
- 2 Reactants: NAD+ and Coenzyme A
- 3 Products: CO2, NADH (potential energy/energy carrier), Acetyl-CoA
- 6 carbons in, 6 carbons out
- Reactants: Acetic acid, ADP+P, 3 NAD+, FAD
- Products: 2CO2, 2ATP, 3 NADH, FADH2 (energy carrier)
- concentration gradient similar to photosynthesis,
- H+ ions move from high concentration to low concentration by diffusion,
- fuels ATP sythase to create ATP from ADP (34 total)
- O2 is final electron acceptor, bonds with H+ to form H2O
- example of anaerobic function: sprinting
- anaerobic: doesn't require oxygen
- aerobic: requires oxygen
- facultative anaerobe can break down with or without oxygen
- obligate anaerobe is poisoned by oxygen
- obligate aerobe dependent on oxygen to survive
- body cells facultative anaerobes
- human body is an obligate aerobe
- Only 2 ATP produced compared to 34-38 in cellular respiration
- anaerobic glycolysis is included in process
- lactic acid is waste product
- anaerobic
- Yeast produces ethyl alcohol and CO2
- anaerobic
Saturday, April 9, 2011
4/8/11
- 6 CO2 + 6 H20 = C6H1206 + 6 O2
- (The numbers are actually subscripts and the "equals" sign is actually an arrow, meaning "yield")
- Reactants= 6 CO2 (Carbon Dioxide), 6 H20 (Water)
- Products= C6H1206 (Glucose), 6 02 (Oxygen Gas)
- Electrons added to Carbon dioxide to produce sugar Water molecules split and release oxygen gas (Sunlight provides the energy for this)
- Simple Summary of Photosynthesis
Light Reactions and Calvin Cycle- 2 different cycles but work together
- Light Reactions
- convert solar energy to chemical energy
- make ATP (for energy storage) and NADPH (is an electron carrier)
- Reactants: NADP+ and ADP and Water (H20) and Light
- Products: Oxygen and ATP and NADPH
- Happens in thylakoid
- Calvin Cycle
- "light independent cycle" or "dark reactions"
- makes sugar from CO2
- uses ATP and NADPH from light reactions
- Reactants: CO2, ATP, NADPH
- Products: Sugar (there are other products too; any other organic product can result also)
Products of Light Reactions are needed for Calvin Cycle and products of Calvin Cycle needed for Light Reactions (Dependent on each other)
- Light is energy!!!
- Sunlight- radiation or electromagnetic energy
- Visible Light is from 380-750 nm (wavelength)
- What we can see- ONLY light reflected from an object
EX- green leaves absorb red-orange and blue-violet light; reflecting green light (chloroplasts convert that absorbed energy into chemical energy)
- Chloroplast Pigments (found in photosystems)
- Chlorophyll a-
- absorbs blue-violet light and red light
- participates directly w/ light reactions
- Chloropyll b-
- absorbs blue and orange light
- increases range of light that can be absorbed (helps light reactions)
- Carotenoids-
- absorbs blue-green light
- absorbs and dissipates excessive light that could damage chlorophyll a
Photosystems and Light
- Photon- fixed quantity of light energy
- pigment molecules absorb photons of light, "exciting" the electrons so that they have more energy (higher energy state)
- electrons "falls" back to normal state (because the more energy they have the more unstable they are)
- releases energy (in form of light or heat)
arrows=light and heat energy being released as electron falls back to normal state
- Photosystems- have clusters of pigment molecules that act as antennae for photons of light
- Photons of light "jump" from pigment to pigment until they reach the Reaction Center (has chlorophyll a)
- Next to Reaction Center= Primary Electron Acceptor
- traps the excited light energy into ATP or NADPH
2 types of Photosystems
- Water-splitting
- light energy to extract electrons from water
- releases oxygen as waste product
- NADPH Producing
- produces NADPH by transferring light excited electrons from chlorophyll to NADP+
- ALL ENERGY IS STORED IN CHEMICAL BONDS!!!!
- Electron transport chain
- connects the 2 photosystems, releases energy used to make ATP
- ATP Synthase- uses energy stored by H+ gradient to make ATP
- H+ molecules= more on the inside than on the outside, so they want to move to the outside
HW:
Read CH. 7
Pre-lab UP pg. 9-12
Next scribe= Kristen :):)
Thursday, April 7, 2011
4/7/11
End of Chemistry notes:
Chemical reaction: the chemical composition of matter is changed in a reaction
- in order to have a balanced chamical reaction, the number of each element must be the equal on both sides
REACTIONS NEVER CREATE OR DESTROY MATTER, THEY REARRAGE IT
Photosynthesis:
-converts energy from sun energy into chemical energy of organic compounds
-occurs in plants, some protists and some bacteria
-Autotrophs- make own food, need inorganic compounds to make organic compounds, these are the producers
-Heterotrophs- cannot make its own food, they eat, dependent on autotrophs, these are the consumers
Photosynthesis occurs in CHLOROPLASTS (mainly the leaves of a plant)
-double membrane envelope
-inner membrane encloses stroma- fluid where sugars are made
-thylakaids- sacs in stroma
-grana=stacks of thylakaids
Homework: read chapter 7
Next Scribe: bridget :)
Wednesday, April 6, 2011
4/6/11
Wednesday, March 23, 2011
3/23/11
- Transpiration works greatest on sunny, warm, dry and windy days.
- Maple tree can lose more than 200 L of water per hour (that's a lot)!
- Leaf stomata can help plants adjust to transpiration rates by changing shape.
- Open during the day, closed during the night (saves water).
- The stomata may close during the day if the plant is losing water too fast.
- Phloem saps move in various directions inside of a plant.
- Phloem moves sugar from a leaf to a root of fruit.
- They move through a pressure-flow mechanism.
- Pressure-flow mechanism is the building of water pressure at source end of phloem tube, and the reduction of water pressure at the sink end causes water to flow from the source (leaf) to sink (root or fruit), carrying sugar with it.
- Plant hormones control the growth & development of a plant.
- It affects division, elongation, & differentiation in cells.
- Auxin - Produced by apical meristem, stimulates growth of the shoot -- causes the cell to elongate.
- Cells elongate on the darker side of the stem, causing the stem to bend on opposite sides.
- Requires certain concentrations: too much causes inhibition of stem elongation.
- Usually inhibits roots.
- Ethylene - A gas that triggers aging responses - fruit ripening, dropping of leaves.
- Why does "one bad apple spoil the whole bunch?" Because one causes all to spoil, it spreads out.
- Cytokinins - Regulates growth, promotes cell division in roots, embryos, and fruits.
- Stimulates growth of axillary buds (makes it more bushy).
- Gibberellins - Stimulates cell elongation & cell division in stems.
- Can influence fruit development.
- Abscisic Acid - Slows growth.
- During droughts, causes stomata to close when wilted, preventing further water loss.
- Enviornment that plants use to detect the time of the year; Lengths of day & night.
- 2 Groups:
- Long-night Plants - chrysanthemum & poinsettias - flower in late summer, fall, or winter, when night lenghtens (Short-day).
- Short-night Plants - lettuce, iris, cereal grains, flower in late spring or early summer, when nights are brieft (Long-day).
- We are currently transitioning into short-nights.
- Some plants aren't affected by photoperiods -- dandelions.
Next Scribe: Sonali P.
3-22-11
Sap- a watery solution that moves through the vascular system.
-In the xylem, it carries nutrients from root to leaves.
-In phloem, it transports pre made sugar to the leaves and other parts of the plant.
-Made in Spring using starch from the previous summer into sugar
-Plants need CO2 from air (through stomata)
-They need H2O from soil (root hairs)
-and O2 from soil (through stomata)
-A plant releases more O2 by photosynthesis than by
respiration
-All nutrition that enters the plant must be dissolved in water.
-Go through the epidermis -> cortex ->plasma membrane of root cells
-Plants need Macronutrients in large amounts. (carbon, hydrogen, oxtygen, nitrogen, sulfur, phosphorus, calcium, potassium, and magnesium.)
-They need Micronutrients in small amounts (zinc, molybdenum, boron, nickel, mainly enzymes.)
-THEIR NUTRITION AFFECTS OUT OWN!
Bacteria help with nutrition; three types:
1.) NITROGEN FIXING BACTERIA- converts N2 in the air to ammonium
2.) AMMONIFYING BACTERIA- adds ammonium to decomposing plant matter
3.) NITRIFYING BACTERIA- converts soil to nitrate.
-Legumes have root nodules that contain nirtogen fixing bacteria.
-Symbiotic relationship, bacteria get home, plants get ions in soil.
The transportation of water:
-Pulled up through transpiration
-cohesion water molecules stick together
-adhesion-water molecules stick to each other
next scribe SALLY Y.
Monday, March 14, 2011
3/14/11
Difference between Monocots and Dicots:
Monocots:
- include orchids, palms, lilies, grains, and grasses.
- 1 cotyledon
- veins usually parallel
- Vascular bundles in scattered arrangement
- floral parts usually in multiples of 3
- Fibrous root system
Dicots:
- 2 cotyledons
- veins usually branched
- vascular bundles arranged in ring
- floral parts usually in multiples of 5
- taproot usually present
Stems: Terminal bud is at apex of stem. It produces hormones making the plant grow up toward the sun.
3 kinds of stems:
- Runner: horizontal stem, new plants emerge from tip of runner
- Rhizome: Horizontal undergrowth stems, store food and can bud new plants
- Tubers: rhizomes ending in large structures(potatoes)
Tendrils= modified leaves for climbing and support.
Parenchyma cells: most abundant cell, for food storage, only primary cell walls
Collenchyma cells: provide support in growing parts of plant, only primary cell walls
Sclerenchyma cells: have thick secondary walls with lignin(wood), when mature most are dead
2 plant vascular tissues:
- Xylem: contains water conducting cells- move water and minerals up stem
- Phloem: contains food conducting cells-transport sugars from leaves or storage tissue to other parts of plant
- Dermal: covers, protcts, waxy coating
- Vascular: xylem and phloem, support and transport
- Ground: bulk of young plant, fills spaces between epidermis and vascular
- Pollination
- Pollen form 2 sperm
- sperm travel through a pollen tube to ovule
- double fertilization occurs
Saturday, March 12, 2011
- very diverse and most live in the tropics and temperate woodlands.
- Started to have vascular tissue
- Sperm are still flagellated (STILL NEED WATER!)
- Still seedless- have spores
- Sporophytes are diploid and gametophytes are haploid
- Sporophyte is the dominant stage
- heart shaped gametophyte is Prothallus
- cone-bearing plants (conifers)
- Withstand harsh winter
- Tallest, oldest, largest
- needle shaped leaves
- have thick cuticle and stomata in pits to prevent water loss
- wood- vascular tissue with liginin
- more sporophyte generation, gametophytes live in cones
- have pollen (male gametophyte
- contains sperm
- wind carries it
- evolution of seeds
- lack ovaries so seeds are naked
- seeds germinates under favorable conditions only
- 2 types of cones
- Female cone is hard, woody, and more familiar (pinecones)
- Male cone is smaller, releases millions of pollen grains. Wind blows it.
- Advantage is more genetic variation
- supply food, textile, some lumber
- refined vascular tissue
- evolution of flowers- responsible for unparalleled success
- the flowers display male and female parts
- insects transfer pollen. Advantage of this is there is a higher chance of pollenation
- Flower has Sepals, petals, stamens, and carpals
- Sepals- green, enclose flower before is opens up
- petals- these are th parts that attract the insects
- stamen- have filaments that bears a sac called the anther. Anther is a MALE organ that develops the pollen grains
- Carpel- also known as pistil. has a sticky tip called the stigma that traps the pollen. Has a style and an ovary. A chamber containing one or more ovules. This is where the egg develops!
- Sporophyte is a familiar plant- female gametophyte within the ovule, and th emale gametophyte is the pollen
- pollen lands on stigma, tube goes to the ovule. It deposits 2 sperm nuclei. Double fertalization
- one sperm cell fertilizes. This becomes a zygote and then an embryo.
- the other cell becomes nutrient for the embryo- storing tissue is called the endosperm
- Embryo has food within the ovule
- Ovule develops into a seed. THE SEED IS NOT NAKED
- Fruit: ripened ovary of the flower
- Fruit protects and helps disperse seeds.
- Animals help to disperse the seeds
- All fruit and vegetables crops are angiosperms.
Thursday, March 10, 2011
3/9/11
CHANGES IN THE PLANT LAB: (UP 11)
For the graph, you will draw 4 lines per line graph.
1. Your water rosette
2. Your GA rosette
3. Class Avg. water rosette
4. Class Avg. GA rosette
New terms:
gibberellin ~ substance that make stems longer
hormone ~ substance that messes with women during pregnancy (transports around organism with specific effect)
node ~ points where leaves are connected
internode ~ part of stem in between 2 nodes
Why study plants?
-B.E.A. uuuutiful. -Jim Carrey, Bruce Almighty -Foodclothesenergylumberpaperoxygenwaterrecreationart ETC.
-Forests are being destroyed... we are gon' learn how we can help!
PLANT KINGDOM
-Multicellular Eukaryotic Autotroph
Adapted to Land:
1. Mycorrhizae ~ plant root/fungi alliance
Fungi absorb the soil's minerals for plant, plant's sugar nourishes fungi in return.
2. Stomata ~ pores in a leaf exchange carbon dioxide and oxygen.
3. Cuticle (Cutin) ~ leaf wax, holds water
4. Lignin ~ hardens cell walls
5. Roots and shoots ~ stem plant growth
6. Xylem tissue moves water up^
Phloem tissue moves food around <>
7. Gametangia ~ cell shield that guards female gamete chamber
8. Seed dispersal ~ relies on wind/animals... =plant reproduction
Origin of Plants from Green Algae
Charophycean ~ multicell green algae-Mother of Plants
Plant Evolution: 1. bryophytes (moss)
2. ferns (reproduce via spore)
3. gymnosperms (Christmas trees)
4. angiosperms (flowers)
1. bryophytes
-MOSS, many plants packed together
-NO CUTICLE WAX, no true roots
-reproduce needs water, flagellated sperm swim to egg
-No vascular tissue(no water transport), no lignin(cell wall)
-Damp Dark places
-Green sponge plant ~ gametophyte
-Grows from gametophyte, tall brown shoot with capsule ~ sporophyte
Generations Take Turns
-Generations take turns making each other
Gametophytes' egg and sperm make zygote, makes new sporophytes
Sporophytes' spores make strong organisms, makes new gametophytes
[Note to next scribe: Start off notes with II.Ferns on page 7 of note packet.]
Extra Credit: Find moss with both Gametophyte and Sporophyte generations and bring em'!
WILDLANDS PROJECT: SHOULD WE SAVE THEM?
-In groups of 4, an American wildland was chosen and we are to research them.
-Using GoogleDocs, we are to create an 8 minute presentation that we will present when we return from SPRING BREAK! ... (to get to GoogleDocs, sign in with your Glenbrook225 email on Google.com and on the top left of Google, there should be a 'More' arrow...click and select "Documents"
-Requirements for project are on page 3 of UP, Rubric on page 4 of UP
-Next Friday, 3/18, will be the 2nd and last IMC work day. Be solid by then.
SPLIT UP THE WORK.
scribe: Justin Timberlake
Wednesday, March 2, 2011
Chordata, 3/2/11
We looked at things inside of jars. These things have something in common. They are all part of the phylum: CHORDATA. They are also all in the sub-phylum: VERTEBRAE.
There are 7 classes of vertebrae:
1. Agnatha
2. Chondrichthyes
3. Osteichthyes
4. Amphibia
5. Reptilia
6. Aves
7. Mammalia
The common chordate traits are:
dorsal hollow nerve cord
gills or pharyngeal slits
post anal tail
segmentation
AGNATHA:
-lack jaws
-includes lampreys
-sometimes are parasites
EXOTHERMIC.
CHONDRICHTHYES:
-usually predators
-sharks can sense electrical movements
-nearly all marine
EXOTHERMIC
OSTEICHTHYES:
-bony fishes
-skeletons
-they are buoyant, unlike sharks
-the operculum is a protective flap that allows
the fish to breathe without swimming
EXOTHERMIC
AMPHIBIAN:
-"double life"
-moist skin
-includes metamorphosis
EXOTHERMIC
REPTILIA:
-first evolved amniotic eggs (water containing eggs)
-regulate internal temperature by behavior
EXOTHERMIC
AVES:
-also have amniotic eggs
-they have scales on their feet like reptiles
ENDOTHERMIC
MAMMALIA:
-constant internal temperature
ENDOTHERMIC
three groups of mammals:
3. Eutherians (placentas provide long lasting association between mom and child)
hw: Nature due on Friday, 87-93 and extra credit 81-82
scribe: Nick.
the end.
Thursday, February 24, 2011
2/24/11
We also did an earthworm lab, where we performed various experiments to further examine how an earthworm lives their everyday lives. We examined many concepts such as how it reacts to touch, moisture, light, and others. We also observed it, and we found out how it moved and the parts of the worm that were visible.
Be prepared to gather certain supplies for an isopod lab for tomorrow, in which groups will pick a certain topic for experimentation of a rolly-polly. Here, the groups are creating their own experiments, so a procedure of a possible experiment would be helpful, and you can revise it when you meet with a possible group.
Also, remember to study the differences between all of the phylum of invertabrates, and any other notes that we have covered.
The homework for tonight is: complete Unit Packet pgs. 45-50, prepare for the isopod lab, and the nature magazine is due on March 4th.
Next scribe is: Nick
Wednesday, February 23, 2011
Kingdom Animalia : Phyla
- Mollusks, annelids, and anthropods- mouth comes first -- protostomes
- Echinoderms and chordates- anus comes first -- deuterostomes
Monday, February 21, 2011
2.18.11
- Most protists are single celled, but there are still some that are multicellular.
- They are eukaryotes and more complex than prokaryotes.
- 2 Theories of how eukaryotic cells evolved :
- All organelles evolved from inward folds of the plasma membrane or endocytosis. ----except mitochondria and chloroplast, because they have their own DNA.
- Endosymbiosis
- developed by Lynn Margulis
- chloroplast and mitochondria evolved from small prokaryotes that established residenc within other, larger host prokaryotes.----the host cell may have injested theses for food and if remained alive, continued to perform respiration within cell.
- Like before, most are unicellular, but some are colonial or mulitcellular. (those two are different.)
- 4 categories of protists:
- protozoans
- slime molds
- unicellular algae
- seaweeds
- Protozoans
- Ingest food and have to live in the water, wet soil or watery enviornment inside animals.
- They have flagellates: one or more to move. Free living but some are parasitic
- Amoeboas: move by pseudopodia-extensions of cytoplasm.
- Forams: move with pseudopodia and components of limestone.
- Apicomlexans: all parasitic and named for an apparatus at their apex.
- Ciliates: use cilia to move and feed.
- may look like fungi but not closely related.
- decomposers
- have chloroplast
- components of plankton-communities of organism, microscopic and drift or swim near surface of ponds and oceans.
- planktonic algae=phytoplankton
- 3 groups:
- multicellular marine algae
- slimy rubbery substances that cushion bodies against waves
- Different colors like: green, red, brown
- Used fro food: found commonly in Asian food, soups, wraps, sushi.
- Also used for thickeners: pudding, ice cream, salad dressing, and Gel agar in petri dishes.
Thursday, February 17, 2011
2.17.11
Lab 44 and Fungi Notes
Today in class, we took notes on Fungus.
Some important things to remember.......
Fungi-
Decompose dead organisms
- Recycle vital chemicals back into the environment
- Eukaryotes
- Multicellular
- Heterotrophs
- Some fungi is pathogenic
- Adapted for absorptive nutrition
- Hyphae- threads composed of tubular walls
- Hyphae form mycelium, which is the feeding network of a fungus
Reproduction
- Reproduce by releasing spores
- spores germinate to produce mycelia
Eating
- Yeast
- Cheese
- Delicacies
- Antibiotics
- Mycorrhizae
We also did Lab 44
Objectives:
In this activity you will:
1. Identify the parts of a mushroom
2. Observe basidia and spores of a mushroom
3. Observe the structure of lichens
Materials:
- mushroom
- hand lens
- paper
- lichens
We did not do everything that the procedure said. Mrs. Andrews showed us what the different thinngs looked like under the microscope.
Lab 44 is in the workbooks
Homework:
Finish Lab 44
You Pick 2 UP pg 15-26 (pick to keys to do)
Next Scribe: Yunsu